Groups of arithmetic functions under Dirichlet convolution
نویسندگان
چکیده
منابع مشابه
The Convolution Ring of Arithmetic Functions and Symmetric Polynomials
Inspired by Rearick (1968), we introduce two new operators, LOG and EXP. The LOG operates on generalized Fibonacci polynomials giving generalized Lucas polynomials. The EXP is the inverse of LOG. In particular, LOG takes a convolution product of generalized Fibonacci polynomials to a sum of generalized Lucas polynomials and EXP takes the sum to the convolution product. We use this structure to ...
متن کاملBraids, Galois Groups, and Some Arithmetic Functions
This lecture is about some new relations among the classical objects of the title. The study of such relations was started by [Bi, G, De, Ihj] from independent motivations, and was developed in [A3, C3, A-I, IKY, Dr2, O, N], etc. It is still a very young subject, and there are several different approaches, each partly blocked by its own fundamental conjectures! But it is already allowing one to...
متن کاملArithmetic Convolution Rings
Arithmetic convolution rings provide a general and unified treatment of many rings that have been called arithmetic; the best known examples are rings of complex valued functions with domain in the set of non-negative integers and multiplication the Cauchy product or the Dirichlet product. The emphasis here is on factorization and related properties of such rings which necessitates prior result...
متن کاملThe Arithmetic of Entire Functions under Composition
In this paper, we prove, among other things, that any family of nonconstant entire functions of one complex variable has a greatest common right factor under composition. We prove a corresponding result for any family of pairwise dependent entire functions of N complex variables. Since f and af +b, where a, b # C and a{0 have all the same properties from the point of view of factoring under com...
متن کاملOn an Arithmetic Convolution
The Cauchy-type product of two arithmetic functions f and g on nonnegative integers is defined by (f • g)(k) := ∑k m=0 ( k m ) f(m)g(k −m). We explore some algebraic properties of the aforementioned convolution, which is a fundamental characteristic of the identities involving the Bernoulli numbers, the Bernoulli polynomials, the power sums, the sums of products, and so forth.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1973
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1973.44.355